' QUICK REFERENCE CARD

This card provides a complete syntax summary of all
statements and functions in both Atari BASIC and OSS
BASIC A+. The various keywords of the languages are
grouped as follows:
First: by category, with a heading for each group. A
keyword may appear in more than one category.

Second: within the category group, those keywords
found in both BASICs precede those found only
OSS BASIC A+,

. Third: within each language partition, all statements
precede all functions. Functions are denoted by
an ‘f’ in front of the keyword.

Finaily: within each list of statements and list of
functions, keywords are placed alphabetically.

NOTE: All capabilities found in OSS BASIC A+ are shown
shaded, as in this sentence.

DEFINITION OF TERMS

KEY Y ORDS are shown in bold face type, and should be
types as shown. The following syntax for each keyword is
show 1 in normal type and generally consists of zero or
morsz of the syntax items shown below. Explanations are
shown in italics. :

Items enclosed [in square brackets] are optional.
Enclosed items [followed by ellipses ...] may be repeated
any number of times.

SYNTAX ITEMS

<stmt> any valid statement <stmts> any number of

var any VARiable valid statements
avar an Arithemetic var placed on any
svar a String var number of lines
mvar a Matrix var (or exp any expression
matrix element) aexp an Arithmetic exp
asvar avar or svar, but sexp a String exp
never mvar line aexp used as a
filer ame a sexp used as a line #
file specifier fn aexp used as a
pm aexp used as P/M # file #

addr an aexp used as a
memory address
Legal forms of file specifiers: <device>:<file>.<ext> where
<device> consists of a single letter optionally followed by
a single digit. When the device is the disk, <file> is any
name consisting of 1 to 8 alphanumeric characters, the
first of which is a letter. <ext> is an optional 1 to 3 alpha-
numeric characters. Here are some examples:
E: (the screen editor) D2:MENU. SAV (a disk file
P: (the printer) on drive 2 with the name
R2: (RS-232 port number 2) “MENU” and the name
extension “SAV”)

COMMAND & CONTROL

BYE

goes to memo pad
CLR

zeroes simple variables,
changes all DIMs to 0
CLOAD

load a program from
cassette

CSAVE

save a program to cassette
ENTER filename

only works with ATASCII
version of a program (see
LIST); actually a merge
unless NEW js used first

LIST file name

lists program to file in
ATASCII just as it appears
on the screen for LIST
alone
LOAD filename

load a previously SAVEd
program

RUN filename

load and run a SAVEd
program
SAVE filename

save a program to a file
using internal format

PROGRAM DEVELOPMENT
STATEMENTS

CLOAD
load a program from
cassette
CONT
continue a program after a
STOP or BREAK
CSAVE
save a program to cassette
END
close all files, stop the
program
ENTER file name
merges an ATASCI!
(LISTed) program into that
already in memory
LIST [filename]
list program in ATASCII to
screen or file
LIST [filename,] line [,line]
list only a portion of a
program
LOAD filename
load a previously SAVEd
program

DEL line [,line]

delete all lines in range
specified

LOMEM addr

can reserve memory; does
a NEW

LVAR filename

list all variables in use by
program in memory to
given file

NEW

remove all programs and
variables from memory
REM <any remark>

allows commenting of
program listings
RUN

begin executing program
in memory at lowest line
number
RUN ([filename]

load a SAVEd program
and start executing it
SAVE filename

save a program in memory
to a file in internal format
STOP

halt execution of program
f FRE(0)

returns amount of memory
still available

RENUM [start][, increment]
renumbers entire program
TRACE
begin displaying each
line’s number as it is
executed
TRACEOFF
cease displaying line
numbers

PROGRAM CONTROL

END

close files, stop program
FOR avar = aexp TO aexp
[STEP aexp] <stmts>:
NEXT avar

traditional loop control
GOSUB line

call a subroutine

GOTO line

transfer control to new line
IF aexp THEN
<stmt>[:<stmt>...]
statements after THEN are
executed only if the aexp
is non-zero

IF aexp THEN line

control is transferred to
new line only if the aexp is
non-zero
NEXT {see FOR}
ON aexp GOTO line
[line...]
ON aexp GOSUB line
[line...]

if aexp = 1, control moves
to first line given; if aexp =
2, then to a second line;
etc.

CONT
after a TRAPped error,
continue at line after error
ELSE {see IF below}
ENDIF {see IF below}
ENDWHILE {see WHILE}
IF aexp : <stmts>
[ELSE : <stmts>]
ENDIF
use when both ‘true’ and
‘false’ paths are needed;
may be nested 127 deep

POP
removes last FOR,
GOSUB, or WHILE from
stack
RETURN
end of subroutine called
by GOSUB
RUN [filename]
start program from
beginning
STEP {see FOR}
STOP
halts program, allows
CONT
THEN {see IF above}
TO {see FOR}
TRAP line
if a subsequent error
occurs, control is trans-
ferred to lihe specified

WHILE aexp:

<stmts>

ENDWHILE

loops between WHILE and
ENDWHILE so long as
aexp is non-zero
f ERR (aexp)

returns last run-time error
code

CONSOLE & FILE I/0

CLOSE #fn

cease I/0 to file channel fn
GET #fn, avar -

set a single byte from fn
INPUT [#fn,] asvar
[.asvar ...]

input ATASCI| data
LPRINT [exp [;exp ...]
[exp..]]

output ATASCII to line
printer

OPEN #fn, mode, avar,
filename

begin I/O with filename on
channel fn

NOTE #fn, avar, avar

find current position/disk
file

POINT #fn, avar, avar
change current file
position

PRINT [#fn]

output new line only
PRINT exp [[; exp ...]
Lexp...]1[]

output data items in
ATASCII

PRINT #fn [[; exp...]
Lexp ...]] [}]

output ATASCI! items to
a file

PUT #fn, aexp

output a single byte to fn
STATUS #fn, avar
dynamic status check
XI10 aexp, #fn, aexp, aexp,
filename

extended I/O operation
? {same as PRINT?}
usable wherever PRINT is
legal

o

CONSOLE & FILE 1/O (cont)

|
|

BGET #fn, addr, len

set binary block from

file fn

BPUT #fn, addr, len

put a binary block to file fn
INPUT “...", var [,var ...]
allows prompt to replace
wn

LPRINT [#fn,] USING sexp,
[exp[,exp ...]][;]

see special table:PRINT

USING

PRINT [#fn,] USING sexp,
[exp[,exp ... 1] [}]

see special table:PRINT

USING

RGET #fn, asvar [,asvar .
get data items In specral
record-oriented format

RPUT #fn, exp [, exp ..]
put data items in special
record-oriented format

TAB [#fn,] aexp
move to given print
column

f TAB (aexp)
function version only
usable in a PRINT stmt

MACHINE CONTROL

MOVE fromaddr, toaddr,
lenaexp

move any piece of memory
to anywhere; moves
“down” if lenaexp is
positive (contracts); moves
“up” if lenaexp is negative
(expands)
POKE addr, aexp

change contents of
memory location addr to
aexp

DPOKE addr, aexp
change contents of WORD
at location addr

f PEEK (addr)

returns contents of
memory location addr
f USR (addr [,aexp ...])
calls user assembly
langtiage subroutine at
addr

f DPEEK (addr)
returns contents of WORD
at location addr

OPERATOR
PRECEDENCE TABLE

The operators of BASIC are listed in order precedence,
from highest to lowest. Higher precedence implies the
operator will be executed first. Example: 3+4x5 is seen as
3+ (4+5) because ‘+’ has a higher precedence than ‘+.

() functions ()

parenthesized subexpressions

=<>><>=<= gtring comparisons [e.g., A$<> “EXIT"]
NOT +— unary operators only [e.g., —3+Z]
A exponentiation
&! binary “and”, binary “or”
«/ multiply and divide
+— add and subtract

=<>><>=<=

numeric comparisons

[e.g., TOTAL > 30]

AND
0 result)

logical “and” (always gives 1 or

OR logical “or” (always gives 1 or

0 result)

, when used in array and function
references [e.g., PRINT ARRAY (7,5)]

NOTE:

In Atari BASIC, NOT was given a precedence just

above AND, but it does not always execute
properly uniess it is followed by a sub-expression
in parentheses [e.g., NOT (A>B) is safe].

ASSIGNMENT
& MATHEMATICS

[LET] avar = aexp
[LET] mvar = aexp
arithmetic assignment;
keyword s optional
DEG
selects degrees for trig
functions
RAD
selects radians for trig
. functions
f ABS (aexp)
returns absolute value of
argument aexp
f ATN (aexp)
returns arc tangent of
argument; returns radians
or degrees, as selected
f CLOG (aexp)
returns common log (base
10) of argument
f COS (aexp)
returns cosine of argument

{ EXP (aexp)
returns ‘e’ to the power
aexp, ‘exponentiation’
f INT (aexp)
returns largest integer less
than or equal to argument
fLOG (aexp)
returns natural logarithm
of the argument
f RND (0)
returns a pseudo-random
number between 0
(inclusive) and 1
(exclusive)
f SGN (aexp)
returns +1, 0, =1 according
to the sign of the argument
(0 only if argument is 0)
f SIN (aexp)
returns sine of argument
f SQR (aexp)
square root of argument
f VAL (sexp)
returns the ‘value’ of a
number contained in a
string

INITIALIZATION

CLR

zeros numeric variables,
sets all DIMs to zero
DEG

selects degrees for trig
functions

DIM svar (aexp)

LOMEM addr
can reserve memory; does
a NEW

-

DIM mvar (aexp[,aexp])
allocate space for either a
string or array

RAD
selects radians for trig
functions

f FRE (0)
returns amount of memory
still available

SET aexp, aexp

see separate chart

f SYS (aexp)

returns value SET before

DOS COMMANDS

DOS
exit to “DOS”

cP

same as DOS
DIR filename

list disk directory on
screen

ERASE filename
remove file from disk

PROTECT filename
disallow writes and/or
erases of given filename

RENAME filenames
changes name of a
file— CAUTICN: form
must be “Dn: oldname,
newnarne”

UNPROTECT filename
remove file protection

STRING & CHARACTER
HANDLING

[LET] svar = sexp
the destination string
variable may be
subscripted

f ADR (svar)
returns the address of the
given string

f ASC (sexp)
returns numeric value of
first byte of given string

[LET] svar =sexp [,sexp...]
allows concatenation of
several strings

f CHR$ (aexp)
returns a one byte string—
character has a value of
aexp
f LEN (sexp)
returns length of string
f STR$ (aexp)
returns a string equivalent
to what would be visible if
aexp were PRINTed

f FIND (sexp, sexp, aexp)
finds location of 2nd str
within 1st string starting at
given position plus one

GRAPHICS, SOUND, &
PLAYER/MISSILE GRAPHICS

COLOR aexp

choose a color for
subsequent PLOT and
DRAWTO

DRAWTO aexp, aexp

draw a line from last point
PLOTted or drawn to
GRAPHICS aexp

choose a graphics mode
LOCATE aexp, aexp, avar
find what color a given
point on the screen is
PLOT aexp, aexp

plot a single point (pixel)
POSITION aexp, aexp

set screen location cursor

MISSLE pm, aexp, aexp
“shoot” a missile
PMCLR pm
clear a player area
PMCOLOR pm, aexp, aexp
change a player color—
same format as
SETCOLOR
PMGRAPHICS aexp
select player/missile mode
PMMOVE pm[,aexp] [;aexp]
move a player or missile
PMWIDTH pm, aexp
change player/missile
width

os

SETCOLOR aexp, aexp,
aexp
change color register
values; order is register
number, hue, luminance
SOUND aexp, aexp, aexp,
aexp
change sound register
values; order is register
number, frequency,
waveform, volume
f PADDLE (aexp)
get current paddle value
f PTRIG (aexp)
returns 0 if trigger pushed
f STICK (aexp)
get current joystick
position
f STRIG (aexp)
returns 0 if trigger pushed

f BUMP (pmnum, aexp)
check for player/missile
and/or playfield collisions

f HSTICK (aexp)
returns -1, 0, +1 if joystick
is left, center, right

f PEN (aexp)
returns light pen values

f PMADR (pm)
gets address of a player or

missile

f VSTICK (aexp)
returns -1, 0, +1 if joystick
is down, center, up

Optimized Systems Software, Inc.
10379 Lansdale Avenue
Cupertino, CA 95014

Telephone (408) 446-3099

IN-MEMORY
DATA HANDLING

DATA <ATASCII data> RESTORE [line]

data may contain any move data pointer to given
characters exeept a line number, (or beginning
comma of program)

READ asvar [,asvar ...]
evaluate next data from
DATA statement(s) and
place in specified variable

DATA [“<quoted data>"] READ var [,var ...]

: [<ATASCII data>] may read directly into

if data is quoted may subscripted array elements
contain any characters or substrings

except another quote

BASIC ERROR MESSAGES

Number Message Number Message
1 Break Key Abort 16 RETURN With No
2 Memory Full Matching GOSUB
3 Value (usually num 17 Bad Line (syntax
too big) error/line)
4 Too Many Variables 18 Not Numeric (VAL func.
5 String Length error)
6 No More Data Available 19 Program Too Big
For Read To Load
7 Line Or Input Value 20 File Number Invalid
>32767 21 Not A SAVEd Program
8 Input Or Read
Data Error 22 ‘USING’ Format
9 Dimension Error 23 ‘USING' Too Big
10 Expression Too 24 ‘USING’ Type
Complex 25 Dimension Mismatch
1 Floating Point Overflow (RGET)
12 No Such Line Number 26 Type Mismatch (RGET)
13 NEXT, With No 27 INPUT Abort
Matching FOR 28 Nesting
14 Line Too Long 29 Player/Missile Number
15 Line Deleted 30 PM Graphics Not Active
(GOSUB, FOR or 32 End of ‘'ENTER'
WHILE)
CIO ERROR MESSAGES
128 Break Abort 133 File Not Open
129 ° File Number Already 134 Bad File Number
Open - 135 File Is Read Only
130 Nonexistent Device 136 End Of File
131 File Is Write Only 137 Truncated Record

132 Invalid Command

SI0O ERROR MESSAGES

138 Device Timeout 142 Serial Bus Overrun
139 Device NAK (refuses 143 Serial Bus Checksum
command)

140 Serial Bus Frame Error

S: (Screen) ERROR MESSAGE
HARDWARE ERROR
MESSAGES

144 Device Error (usually 145 Read/Write Verify
write protected disk) 146 Invalid Function

SET/SYS VALUES

SET is used to configure certammktm

parameters. The companion
to find out what the configu nis .
The format is: SET parameter iber, value. A number in
parentheses is the “power-on” default vak
Parameter Values Meanings
Number
0 (0) BREAK key functions normally.
1 BREAK causes trappable error.
128 BREAKS are ignored.
1to0 127 Tab sire for comma in PRINT (10).
2 010255 Prompt character for INPUT

ok

(63,7

a (0) FOR ... NEXT loops execute at least
once.

1 FOR loops may execute zero times.

4 0] Reprompt user if too little

INPUT data.
(1) No reprompt, a TRAPpable error

occurs.

5 0 Lower case/inverse video
unchanged.

(1) For program entry ONLY, lower case
& inverse video converted to

upper case.
6 (0) Print error messages and error
numbers.
1 Print only error numbers.
Z (0) Player/missiles will NOT wrap
around.
1 Player/missiles wrap around from

top to bottom and vice versa.
8 0 No parameter count push for
USR calis.
(1) DO push the count of parameters.
9 (0) ENTER statements work like
Atari BASIC.
1 End of an ENTER is treated as a
trappable error.

PRINT USING TABLE

Symbol Result

#... Blank Fill On Left
* ... Asterisk Fill On Left
.. Zero Fill On Left
, Numeric Comma Placeholder
. Numeric Decimal Point Placeholder
$ Fixed Dollar Sign
Floating Dollar Sign
Floating Forced Sign (+ or -)
Floating Minus Sign (Blank or -)
Right Justified String
.. Left Justified String
+ Leading Or Trailing Fixed Forced Sign
tors)
— Leading Or Trailing Fixed Minus Sign
(Blank or -)
/X Escape Sequence (X is ANY character
and is forced whether in a format or not)

- | +e

